Customize Algorithm¶
This tutorial demonstrates how to implement a new model merging algorithm in FusionBench. You'll learn the essential components, interfaces, and best practices for creating custom algorithms that integrate seamlessly with the FusionBench framework.
🎯 Overview¶
FusionBench follows a modular design where algorithms inherit from BaseAlgorithm
and implement the required interfaces. This allows you to:
- Create custom merging strategies
- Leverage existing utilities and mixins
- Integrate with the configuration system
- Add profiling and monitoring capabilities
🏗️ Algorithm Structure¶
Basic Template¶
Here's the minimal structure for a custom algorithm:
📁 File Organization¶
Organize your algorithm files following FusionBench conventions:
fusion_bench/method/
├── your_algorithm/
│ ├── __init__.py
│ └── your_algorithm.py
└── __init__.py # Register your algorithm here (optional)
(Optional) Register in Main init.py¶
Add your algorithm to the main method registry:
_import_structure = {
# ... existing algorithms ...
"your_algorithm": ["YourAlgorithm"],
# ... rest of the algorithms ...
}
if TYPE_CHECKING:
from .your_algorithm import YourAlgorithm
⚙️ Configuration Integration¶
Integrate your algorithm with the FusionBench configuration system by creating a YAML configuration file:
_target_: fusion_bench.method.YourAlgorithm
custom_param: 0.5
another_param: true
🔌 Advanced Features¶
Adding Profiling Support¶
Use the SimpleProfilerMixin
for performance monitoring:
from fusion_bench.mixins.simple_profiler import SimpleProfilerMixin
class YourAlgorithm(BaseAlgorithm, SimpleProfilerMixin):
def run(self, modelpool):
with self.profile("initialization"):
# Initialization code
pass
with self.profile("model_loading"):
# Model loading code
pass
with self.profile("parameter_merging"):
# Merging logic
pass
# Print timing summary
self.print_profile_summary()
Adding Logging¶
Include proper logging for debugging and monitoring:
import logging
log = logging.getLogger(__name__)
class YourAlgorithm(BaseAlgorithm):
def run(self, modelpool):
log.info(f"Starting merge with {len(modelpool.model_names)} models")
log.debug(f"Model names: {modelpool.model_names}")
# Algorithm logic...
log.info("Merge completed successfully")
Parameter Validation¶
Add robust parameter validation:
class YourAlgorithm(BaseAlgorithm):
def __init__(self, param1: float, param2: int):
super().__init__()
# Validate parameters
if not 0 <= param1 <= 1:
raise ValueError(f"param1 must be in [0, 1], got {param1}")
if param2 <= 0:
raise ValueError(f"param2 must be positive, got {param2}")
self.param1 = param1
self.param2 = param2
🚀 Usage Examples¶
Command Line Usage¶
# Use your custom algorithm
fusion_bench \
method=<path_to_your_algorithm_config> \
modelpool=modelpool_config \
taskpool=taskpool_config
Programmatic Usage (Use without CLI)¶
from fusion_bench.method.your_algorithm import YourAlgorithm
from fusion_bench.modelpool import BaseModelPool
# Create your algorithm
algorithm = YourAlgorithm(
custom_param=0.5,
another_param=True
)
# Apply to your models
merged_model = algorithm.run(your_modelpool)
🔗 Next Steps¶
- Explore existing algorithms for more implementation patterns
- Learn about model pools for advanced model management
- Check out evaluation strategies to assess your merged models
- Contribute your algorithm back to the FusionBench community!