fusion_bench.metrics¶
NYUv2 Tasks¶
fusion_bench.metrics.nyuv2
¶
metric_classes = {'segmentation': SegmentationMetric, 'depth': DepthMetric, 'normal': NormalMetric, 'noise': NoiseMetric}
module-attribute
¶
SegmentationMetric
¶
Bases: Metric
Source code in fusion_bench/metrics/nyuv2/segmentation.py
compute()
¶
return mIoU and pixel accuracy
Source code in fusion_bench/metrics/nyuv2/segmentation.py
DepthMetric
¶
Bases: Metric
Source code in fusion_bench/metrics/nyuv2/depth.py
NormalMetric
¶
Bases: Metric
Source code in fusion_bench/metrics/nyuv2/normal.py
compute()
¶
returns mean, median, and percentage of pixels with error less than 11.25, 22.5, and 30 degrees ("mean", "median", "<11.25", "<22.5", "<30")
Source code in fusion_bench/metrics/nyuv2/normal.py
Continual Learning Metrics¶
fusion_bench.metrics.continual_learning
¶
compute_backward_transfer(acc_Ti, acc_ii)
¶
Compute the backward transfer (BWT) of a model on a set of tasks.
Equation
\(BWT = \frac{1}{n} \sum_{k=1}^{n} (acc_{T,i}[k] - acc_{i,i}[k])\)
Returns:
-
float
(float
) –The backward transfer of the model.