SMILE Upscaling¶

Taxonomy for SMILE Upscaling¶
Here we present the taxonomy for the SMILE upscaling method following "A Survey on Model MoErging" by Yadav et al. (2024) 1.
Expert Training | Standard | Expert Data | Private | Routing Dataset | None |
Input Granularity | Step | Depth Granularity | Module | Expert Selection | Sparse |
Expert Aggregation | Output | Generalization | In-Distribution | User Dataset | Zero-Shot |
Configurations¶
The SMILE upscaling method offers several configuration options, which are located in the config/method/
directory.
- General
nn.Module
Upscaling: This configuration is designed for upscaling any neural network module (nn.Module
). - Mistral Model Upscaling: This specific configuration is for Mistral models.
Each configuration file contains detailed parameters and options that can be adjusted to meet the specific needs of your model and application.
_target_: fusion_bench.method.SmileUpscalingAlgorithm
# merge device on cuda can accelerate the SVD computation
device: cpu
# device to compute svd
upscaling_accelerator: cuda
full_matrices: true # set to false if you are sure k < rank
gate_k: 1
k: 128
top_k: 1
routing_use_diff: true
# average the remaining part, if this is set the False, the remaining part will kept as base model (the pretrained model)
average_experts: false
# path to save/load the model
model_path: null
_target_: fusion_bench.method.smile_upscaling.smile_mistral_upscaling.SmileMistralUpscalingAlgorithm
# device to put the models on
device: cpu
# device to perform SVD on
accelerator: cuda
# path to save/load the model
model_path: null
model_dtype: null
# SmileMoE parameters
num_experts_per_tok: 1
rank_of_router: 8
# if rank_of_expert < 0, dense expert is used.
rank_of_expert: 512
Examples¶
CLIP-ViT-B/32 on eight tasks¶
Evaluate single fine-tuned models and save the results to outputs/ViT-B-32/single-task/
and outputs/ViT-L-14/single-task/
for CLIP-ViT-B/32 and CLIP-ViT-L/14 models, respectively.
# evaluate singlue fine-tuned models
for task in sun397 stanford-cars resisc45 eurosat svhn gtsrb mnist dtd
do
fusion_bench method=dummy \
modelpool=clip-vit-base-patch32_individual \
modelpool.models.0.path=tanganke/clip-vit-base-patch32_${task} \
taskpool=clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/single-task/clip-vit-base-patch32_${task}.json"
done
# if you have multiple GPUs, you can run the following code to evaluate the CLIP-ViT-L/14 models in parallel
# evaluate singlue fine-tuned models clip-vit-large
tasks=(sun397 stanford-cars resisc45 eurosat svhn gtsrb mnist dtd)
CUDA_DEVICES=(0 1 2 3 4 5 6 7) # List of CUDA devices to use
for i in "${!CUDA_DEVICES[@]}"; do
task=${tasks[$i]}
CUDA_VISIBLE_DEVICES=${CUDA_DEVICES[$i]} fusion_bench method=dummy \
modelpool=CLIPVisionModelPool/clip-vit-large-patch14_individual \
modelpool.models._pretrained_=tanganke/clip-vit-large-patch14_${task} \
taskpool=CLIPVisionModelTaskPool/clip-vit-classification_TA8 \
taskpool.clip_model=openai/clip-vit-large-patch14 \
report_save_path="outputs/ViT-L-14/single-task/clip-vit-large-patch14_${task}.json" &
done
Upscale eight CLIP-ViT-B/32 models with SMILE, each CLIP-ViT-B/32 model is trained on a downstream task.
gate_k=16
k=32
fusion_bench \
method=smile_upscaling/smile_upscaling \
method.device=cuda \
method.gate_k=$gate_k method.k=$k \
modelpool=CLIPVisionModelPool/clip-vit-base-patch32_TA8 \
taskpool=CLIPVisionModelTaskPool/clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/eight_tasks/gate_k\=${gate_k}_k\=${k}.json"
Hyperparameter search for SMILE upscaling. Pre-run results can be found in examples/smile_upscaling/clip-vit-base-patch32.ipynb
.
for gate_k in 1 2 4 8 16 32 64 128 256 512 768; do
for k in 4 8 16 32 64 128 -1; do
fusion_bench \
method=smile_upscaling/smile_upscaling \
method.device=cuda \
method.gate_k=$gate_k method.k=$k \
modelpool=Seq2SeqLMPool/clip-vit-base-patch32_TA8 \
taskpool=clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/eight_tasks/gate_k\=${gate_k}_k\=${k}.json"
done
done
Ablations on number of experts per token (Top-K). Pre-run results can be found in examples/smile_upscaling/clip-vit-base-patch32-ablations-topk.ipynb
.
gate_k=16
k=32
for top_k in 1 2 4
do
fusion_bench \
method=smile_upscaling/smile_upscaling \
method.device=cuda \
method.gate_k=$gate_k method.k=$k \
modelpool=Seq2SeqLMPool/clip-vit-base-patch32_TA8 \
taskpool=clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/ablation/gate_k\=${gate_k}_k\=${k}.json"
done
CLIP-ViT-L/14 on eight tasks¶
hyperparameter search for SMILE upscaling. Pre-run results can be found in examples/smile_upscaling/clip-vit-large-patch14.ipynb
.
for gate_k in 1 2 4 8 16 32 64 128; do
for k in 4 8 16 32 64 128 -1; do
fusion_bench \
method=smile_upscaling/smile_upscaling \
method.gate_k=$gate_k method.k=$k \
modelpool=Seq2SeqLMPool/clip-vit-large-patch14_TA8 \
taskpool=clip-vit-classification_TA8 \
taskpool.clip_model=openai/clip-vit-large-patch14 \
report_save_path="outputs/ViT-B-32/eight_tasks/gate_k\=${gate_k}_k\=${k}.json"
done
done
Flan-T5 models on eight tasks from GLUE benchmark¶
Hyperparameter search for full fine-tuned and lora fine-tuned Flan-T5 models.
Pre-run results can be found in examples/smile_upscaling/flan-t5-base.ipynb
and examples/smile_upscaling/flan-t5-base-lora16.ipynb
.
# hyperparameter search for full fine-tuned flan-t5-base
for gate_k in 4 8 16 32; do
for k in 16 32 64 128; do
fusion_bench \
method=smile_upscaling/smile_upscaling \
method.device=cpu \
method.gate_k=$gate_k method.k=$k \
modelpool=Seq2SeqLMPool/flan-t5-base_glue \
taskpool=flan-t5_glue_text_generation \
report_save_path="outputs/flan-t5-base/glue_text_generation/gate_k\=${gate_k}_k\=${k}.json"
done
done
# hyperparameter search for lora fine-tuned flan-t5-base
for gate_k in 2 4 8; do
for k in 4 8 16; do
fusion_bench \
method=smile_upscaling/smile_upscaling \
method.device=cuda \
method.gate_k=$gate_k method.k=$k \
modelpool=Seq2SeqLMPool/flan-t5-base_glue_lora16 \
taskpool=flan-t5_glue_text_generation \
report_save_path="outputs/flan-t5-base_lora16/glue_text_generation/gate_k\=${gate_k}_k\=${k}.json"
done
done
Upscale Mistral-7B models¶
Here we upscale several Mistral-7B models using SMILE. The models are trained on different tasks and are used as experts in the SMILE upscaling.
We first provide an example of the upscaled model, where we upscale the linear layers of the original Mistral model into a SMILE linear layer.
import torch
from accelerate import init_empty_weights
from transformers import AutoConfig
from fusion_bench.models.modeling_smile_mistral import (
SmileMistralConfig,
SmileMistralForCausalLM,
)
config = AutoConfig.from_pretrained(
"mistralai/Mistral-7B-v0.1"
)
config = SmileMistralConfig(
num_experts_per_tok=1,
rank_of_router=8,
rank_of_expert=8,
num_local_experts=3,
**config.to_dict()
)
with init_empty_weights():
model = SmileMistralForCausalLM(config)
model.to(dtype=torch.float16).to_empty(device="cuda")
The model architecture is as follows:
SmileMistralForCausalLM(
(model): SmileMistralModel(
(embed_tokens): Embedding(32000, 4096)
(layers): ModuleList(
(0-31): 32 x SmileMistralDecoderLayer(
(self_attn): SmileMistralAttention(
(q_proj): SingularMoELinear(in_features=4096, out_features=4096, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(k_proj): SingularMoELinear(in_features=4096, out_features=1024, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(v_proj): SingularMoELinear(in_features=4096, out_features=1024, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(o_proj): SingularMoELinear(in_features=4096, out_features=4096, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(rotary_emb): MistralRotaryEmbedding()
)
(mlp): SmileMistralMLP(
(gate_proj): SingularMoELinear(in_features=4096, out_features=14336, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(up_proj): SingularMoELinear(in_features=4096, out_features=14336, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(down_proj): SingularMoELinear(in_features=14336, out_features=4096, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(act_fn): SiLU()
)
(input_layernorm): MistralRMSNorm()
(post_attention_layernorm): MistralRMSNorm()
)
)
(norm): MistralRMSNorm()
)
(lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)
Knowing the model architecture, we can upscale the Mistral-7B models using the following steps:
-
Prepare the following 4 configuration files in
configs/modelpool
:config/modelpool/smile_mistral_exp_v1.yamltype: AutoModelForCausalLMPool models: - name: _pretrained_ path: mistralai/Mistral-7B-v0.1 - name: expert_1 path: meta-math/MetaMath-Mistral-7B dtype: float16
config/modelpool/smile_mistral_exp_v2.yamltype: AutoModelForCausalLMPool models: - name: _pretrained_ path: mistralai/Mistral-7B-v0.1 - name: expert_1 path: cognitivecomputations/dolphin-2.1-mistral-7b dtype: float16
config/modelpool/smile_mistral_exp_v3.yamltype: AutoModelForCausalLMPool models: - name: _pretrained_ path: mistralai/Mistral-7B-v0.1 - name: expert_1 path: uukuguy/speechless-code-mistral-7b-v1.0 dtype: float16
config/modelpool/smile_mistral_exp_v4.yamltype: AutoModelForCausalLMPool models: - name: _pretrained_ path: mistralai/Mistral-7B-v0.1 - name: expert_1 path: meta-math/MetaMath-Mistral-7B - name: expert_2 path: cognitivecomputations/dolphin-2.1-mistral-7b - name: expert_3 path: uukuguy/speechless-code-mistral-7b-v1.0 dtype: float16
-
Upscale Mistral-7B models. The upscaled models are saved in
outputs/mistral/gate_k-${gate_k}_k-${k}/version_${version}
.function model_fusion() { output_dir=outputs/mistral/gate_k-${gate_k}_k-${k}/version_${version} fusion_bench \ method=smile_upscaling/smile_mistral_upscaling \ method.rank_of_router=$gate_k method.rank_of_expert=$k \ method.model_path=${output_dir} \ modelpool=smile_mistral_exp_v${version} \ modelpool.dtype=float32 \ taskpool=dummy \ report_save_path="${output_dir}/model_info.json" } gate_k=8 for k in 8 16 32 64 128 256 384 512; do for version in 1 2 3 4; do model_fusion done done
-
Use lm-evaluation-harness to evaluate the models. We use the default configurations for each task.
# For some GPUs, the following environment variables need to be set # export NCCL_P2P_DISABLE="1" # export NCCL_IB_DISABLE="1" function model_eval() { output_dir=outputs/mistral/gate_k-${gate_k}_k-${k}/version_${version} # Check if ${output_dir}/${task}.json exists as a directory and return if it does if [ -d "${output_dir}/${task}.json" ]; then echo "Directory ${output_dir}/${task}.json already exists. Skipping evaluation." return fi lm_eval --model hf \ --model_args pretrained=${output_dir},dtype="float16",parallelize=True \ --tasks ${task} \ --output_path ${output_dir}/${task}.json \ --batch_size 6 }
The above function can be used to evaluate the models on specified task. Pre-run results can be found in
examples/smile_upscaling/mistral_gsm8k.ipynb
.# Evaluate all the models on GSM8K task gate_k=8 task=gsm8k for k in 8 16 32 64 128 256 384 512; do for version in 1 2 3 4; do model_eval done done # Evaluate all M0;123 models on truthfulqa gsm8k arc_challenge mmlu k=8 version=4 for task in truthfulqa gsm8k arc_challenge mmlu; do model_eval done
The reported metrics are:
- mmlu (general): acc
- truthfulqa (truthful): mc2
- gsm8k (math): flexible exact match
- arc_challenge (reasoning): acc_norm
Scope¶
Projection Merge Experiments¶
Pre-run results can be found in examples/smile_upscaling/clip-vit-base-patch32_single-task_projection-merging.ipynb
.
# project into different subspaces
for task in sun397 stanford-cars resisc45 eurosat svhn gtsrb mnist dtd
do
# Space I
CUDA_VISIBLE_DEVICES=0 fusion_bench \
method=smile_upscaling/singular_projection_merging \
method.device=cuda method.rank=low method.k=-1 method.full_matrices=false \
modelpool=CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned \
modelpool.models.finetuned=tanganke/clip-vit-base-patch32_${task} \
taskpool=CLIPVisionModelTaskPool/clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/single-task/projection_merging_zone1_${task}.json" &
# Space II
CUDA_VISIBLE_DEVICES=1 fusion_bench \
method=smile_upscaling/singular_projection_merging \
method.device=cuda method.rank=high method.k=-1 method.full_matrices=false \
modelpool=CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned \
modelpool.models.finetuned=tanganke/clip-vit-base-patch32_${task} \
taskpool=CLIPVisionModelTaskPool/clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/single-task/projection_merging_zone2_${task}.json" &
# Space II+III
CUDA_VISIBLE_DEVICES=2 fusion_bench \
method=smile_upscaling/singular_projection_merging \
method.device=cuda method.rank=high method.k=-1 method.full_matrices=true \
modelpool=CLIPVisionModelPool/clip-vit-base-patch32_single_finetuned \
modelpool.models.finetuned=tanganke/clip-vit-base-patch32_${task} \
taskpool=CLIPVisionModelTaskPool/clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/single-task/projection_merging_zone23_${task}.json" &
wait
done
Implementation Details¶
-
Yadav, Prateek, et al. "A Survey on Model MoErging: Recycling and Routing Among Specialized Experts for Collaborative Learning." arXiv preprint arXiv:2408.07057 (2024). ↩
-
A. Tang et. al. SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models. Aug, 2024. https://arxiv.org/abs/2408.10174 ↩