SMILE Upscaling¶

Taxonomy for SMILE Upscaling¶
Here we present the taxonomy for the SMILE upscaling method following "A Survey on Model MoErging" by Yadav et al. (2024) 2.
Expert Training | Standard | Expert Data | Private | Routing Dataset | None |
Input Granularity | Step | Depth Granularity | Module | Expert Selection | Sparse |
Expert Aggregation | Output | Generalization | In-Distribution | User Dataset | Zero-Shot |
Configurations¶
The SMILE upscaling method offers several configuration options, which are located in the config/method/
directory.
- General
nn.Module
Upscaling: This configuration is designed for upscaling any neural network module (nn.Module
). - Mistral Model Upscaling: This specific configuration is for Mistral models.
Each configuration file contains detailed parameters and options that can be adjusted to meet the specific needs of your model and application.
name: smile_upscaling
# merge device on cuda can accelerate the SVD computation
device: cpu
# device to compute svd
upscaling_accelerator: cuda
full_matrices: true # set to false if you are sure k < rank
gate_k: 1
k: 128
top_k: 1
routing_use_diff: true
# average the remaining part, if this is set the False, the remaining part will kept as base model (the pretrained model)
average_experts: false
# path to save/load the model
model_path: null
name: smile_mistral_upscaling
device: cpu
accelerator: cuda
# path to save/load the model
model_path: null
model_dtype: float16
num_experts_per_tok: 1
rank_of_router: 8
rank_of_expert: 512
Examples¶
CLIP-ViT-B/32 on eight tasks¶
Evaluate single fine-tuned models and save the results to outputs/ViT-B-32/single-task/
and outputs/ViT-L-14/single-task/
for CLIP-ViT-B/32 and CLIP-ViT-L/14 models, respectively.
# evaluate singlue fine-tuned models
for task in sun397 stanford-cars resisc45 eurosat svhn gtsrb mnist dtd
do
fusion_bench method=dummy \
modelpool=clip-vit-base-patch32_individual \
modelpool.models.0.path=tanganke/clip-vit-base-patch32_${task} \
taskpool=clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/single-task/clip-vit-base-patch32_${task}.json"
done
# if you have multiple GPUs, you can run the following code to evaluate the CLIP-ViT-L/14 models in parallel
# evaluate singlue fine-tuned models clip-vit-large
tasks=(sun397 stanford-cars resisc45 eurosat svhn gtsrb mnist dtd)
CUDA_DEVICES=(0 1 2 3 4 5 6 7) # List of CUDA devices to use
for i in "${!CUDA_DEVICES[@]}"; do
task=${tasks[$i]}
CUDA_VISIBLE_DEVICES=${CUDA_DEVICES[$i]} fusion_bench method=dummy \
modelpool=clip-vit-large-patch14_individual \
modelpool.models.0.path=tanganke/clip-vit-large-patch14_${task} \
taskpool=clip-vit-classification_TA8 \
taskpool.clip_model=openai/clip-vit-large-patch14 \
report_save_path="outputs/ViT-L-14/single-task/clip-vit-large-patch14_${task}.json" &
done
Upscale eight CLIP-ViT-B/32 models with SMILE, each CLIP-ViT-B/32 model is trained on a downstream task.
gate_k=16
k=32
fusion_bench \
method=smile_upscaling \
method.device=cuda \
method.gate_k=$gate_k method.k=$k \
modelpool=CLIPVisionModelPool/clip-vit-base-patch32_TA8 \
taskpool=CLIPVisionModelTaskPool/clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/eight_tasks/gate_k\=${gate_k}_k\=${k}.json"
Hyperparameter search for SMILE upscaling. Pre-run results can be found in examples/smile_upscaling/clip-vit-base-patch32.ipynb
.
for gate_k in 1 2 4 8 16 32 64 128 256 512 768; do
for k in 4 8 16 32 64 128 -1; do
fusion_bench \
method=smile_upscaling \
method.device=cuda \
method.gate_k=$gate_k method.k=$k \
modelpool=clip-vit-base-patch32_TA8 \
taskpool=clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/eight_tasks/gate_k\=${gate_k}_k\=${k}.json"
done
done
Ablations on number of experts per token (Top-K). Pre-run results can be found in examples/smile_upscaling/clip-vit-base-patch32-ablations-topk.ipynb
.
gate_k=16
k=32
for top_k in 1 2 4
do
fusion_bench \
method=smile_upscaling \
method.device=cuda \
method.gate_k=$gate_k method.k=$k \
modelpool=clip-vit-base-patch32_TA8 \
taskpool=clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/ablation/gate_k\=${gate_k}_k\=${k}.json"
done
CLIP-ViT-L/14 on eight tasks¶
hyperparameter search for SMILE upscaling. Pre-run results can be found in examples/smile_upscaling/clip-vit-large-patch14.ipynb
.
for gate_k in 1 2 4 8 16 32 64 128; do
for k in 4 8 16 32 64 128 -1; do
fusion_bench \
method=smile_upscaling \
method.gate_k=$gate_k method.k=$k \
modelpool=clip-vit-large-patch14_TA8 \
taskpool=clip-vit-classification_TA8 \
taskpool.clip_model=openai/clip-vit-large-patch14 \
report_save_path="outputs/ViT-B-32/eight_tasks/gate_k\=${gate_k}_k\=${k}.json"
done
done
Flan-T5 models on eight tasks from GLUE benchmark¶
Hyperparameter search for full fine-tuned and lora fine-tuned Flan-T5 models.
Pre-run results can be found in examples/smile_upscaling/flan-t5-base.ipynb
and examples/smile_upscaling/flan-t5-base-lora16.ipynb
.
# hyperparameter search for full fine-tuned flan-t5-base
for gate_k in 4 8 16 32; do
for k in 16 32 64 128; do
fusion_bench \
method=smile_upscaling \
method.device=cpu \
method.gate_k=$gate_k method.k=$k \
modelpool=flan-t5-base_glue \
taskpool=flan-t5_glue_text_generation \
report_save_path="outputs/flan-t5-base/glue_text_generation/gate_k\=${gate_k}_k\=${k}.json"
done
done
# hyperparameter search for lora fine-tuned flan-t5-base
for gate_k in 2 4 8; do
for k in 4 8 16; do
fusion_bench \
method=smile_upscaling \
method.device=cuda \
method.gate_k=$gate_k method.k=$k \
modelpool=flan-t5-base_glue_lora16 \
taskpool=flan-t5_glue_text_generation \
report_save_path="outputs/flan-t5-base_lora16/glue_text_generation/gate_k\=${gate_k}_k\=${k}.json"
done
done
Upscale Mistral-7B models¶
Here we upscale several Mistral-7B models using SMILE. The models are trained on different tasks and are used as experts in the SMILE upscaling.
We first provide an example of the upscaled model, where we upscale the linear layers of the original Mistral model into a SMILE linear layer.
import torch
from accelerate import init_empty_weights
from transformers import AutoConfig
from fusion_bench.models.modeling_smile_mistral import (
SmileMistralConfig,
SmileMistralForCausalLM,
)
config = AutoConfig.from_pretrained(
"mistralai/Mistral-7B-v0.1"
)
config = SmileMistralConfig(
num_experts_per_tok=1,
rank_of_router=8,
rank_of_expert=8,
num_local_experts=3,
**config.to_dict()
)
with init_empty_weights():
model = SmileMistralForCausalLM(config)
model.to(dtype=torch.float16).to_empty(device="cuda")
The model architecture is as follows:
SmileMistralForCausalLM(
(model): SmileMistralModel(
(embed_tokens): Embedding(32000, 4096)
(layers): ModuleList(
(0-31): 32 x SmileMistralDecoderLayer(
(self_attn): SmileMistralAttention(
(q_proj): SingularMoELinear(in_features=4096, out_features=4096, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(k_proj): SingularMoELinear(in_features=4096, out_features=1024, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(v_proj): SingularMoELinear(in_features=4096, out_features=1024, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(o_proj): SingularMoELinear(in_features=4096, out_features=4096, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(rotary_emb): MistralRotaryEmbedding()
)
(mlp): SmileMistralMLP(
(gate_proj): SingularMoELinear(in_features=4096, out_features=14336, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(up_proj): SingularMoELinear(in_features=4096, out_features=14336, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(down_proj): SingularMoELinear(in_features=14336, out_features=4096, num_local_experts=3, num_experts_per_tok=1, rank_of_router=8, rank_of_expert=8)
(act_fn): SiLU()
)
(input_layernorm): MistralRMSNorm()
(post_attention_layernorm): MistralRMSNorm()
)
)
(norm): MistralRMSNorm()
)
(lm_head): Linear(in_features=4096, out_features=32000, bias=False)
)
Knowing the model architecture, we can upscale the Mistral-7B models using the following steps:
-
Prepare the following 4 configuration files in
configs/modelpool
:config/modelpool/smile_mistral_exp_v1.yamltype: AutoModelForCausalLMPool models: - name: _pretrained_ path: mistralai/Mistral-7B-v0.1 - name: expert_1 path: meta-math/MetaMath-Mistral-7B dtype: float16
config/modelpool/smile_mistral_exp_v2.yamltype: AutoModelForCausalLMPool models: - name: _pretrained_ path: mistralai/Mistral-7B-v0.1 - name: expert_1 path: cognitivecomputations/dolphin-2.1-mistral-7b dtype: float16
config/modelpool/smile_mistral_exp_v3.yamltype: AutoModelForCausalLMPool models: - name: _pretrained_ path: mistralai/Mistral-7B-v0.1 - name: expert_1 path: uukuguy/speechless-code-mistral-7b-v1.0 dtype: float16
config/modelpool/smile_mistral_exp_v4.yamltype: AutoModelForCausalLMPool models: - name: _pretrained_ path: mistralai/Mistral-7B-v0.1 - name: expert_1 path: meta-math/MetaMath-Mistral-7B - name: expert_2 path: cognitivecomputations/dolphin-2.1-mistral-7b - name: expert_3 path: uukuguy/speechless-code-mistral-7b-v1.0 dtype: float16
-
Upscale Mistral-7B models. The upscaled models are saved in
outputs/mistral/gate_k-${gate_k}_k-${k}/version_${version}
.function model_fusion() { output_dir=outputs/mistral/gate_k-${gate_k}_k-${k}/version_${version} fusion_bench \ method=smile_mistral_upscaling \ method.rank_of_router=$gate_k method.rank_of_expert=$k \ method.model_path=${output_dir} \ modelpool=smile_mistral_exp_v${version} \ modelpool.dtype=float32 \ taskpool=dummy \ report_save_path="${output_dir}/model_info.json" } gate_k=8 for k in 8 16 32 64 128 256 384 512; do for version in 1 2 3 4; do model_fusion done done
-
Use lm-evaluation-harness to evaluate the models. We use the default configurations for each task.
# For some GPUs, the following environment variables need to be set # export NCCL_P2P_DISABLE="1" # export NCCL_IB_DISABLE="1" function model_eval() { output_dir=outputs/mistral/gate_k-${gate_k}_k-${k}/version_${version} # Check if ${output_dir}/${task}.json exists as a directory and return if it does if [ -d "${output_dir}/${task}.json" ]; then echo "Directory ${output_dir}/${task}.json already exists. Skipping evaluation." return fi lm_eval --model hf \ --model_args pretrained=${output_dir},dtype="float16",parallelize=True \ --tasks ${task} \ --output_path ${output_dir}/${task}.json \ --batch_size 6 }
The above function can be used to evaluate the models on specified task. Pre-run results can be found in
examples/smile_upscaling/mistral_gsm8k.ipynb
.# Evaluate all the models on GSM8K task gate_k=8 task=gsm8k for k in 8 16 32 64 128 256 384 512; do for version in 1 2 3 4; do model_eval done done # Evaluate all M0;123 models on truthfulqa gsm8k arc_challenge mmlu k=8 version=4 for task in truthfulqa gsm8k arc_challenge mmlu; do model_eval done
The reported metrics are:
- mmlu (general): acc
- truthfulqa (truthful): mc2
- gsm8k (math): flexible exact match
- arc_challenge (reasoning): acc_norm
Scope¶
Projection Merge Experiments¶
Pre-run results can be found in examples/smile_upscaling/clip-vit-base-patch32_single-task_projection-merging.ipynb
.
# project into different subspaces
for task in sun397 stanford-cars resisc45 eurosat svhn gtsrb mnist dtd
do
# Space I
CUDA_VISIBLE_DEVICES=0 fusion_bench \
method=singular_projection_merging \
method.device=cuda method.rank=low method.k=-1 method.full_matrices=false \
modelpool=clip-vit-base-patch32_single_finetuned \
modelpool.models.1.name=${task} \
modelpool.models.1.path=tanganke/clip-vit-base-patch32_${task} \
taskpool=clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/single-task/projection_merging_zone1_${task}.json" &
# Space II
CUDA_VISIBLE_DEVICES=1 fusion_bench \
method=singular_projection_merging \
method.device=cuda method.rank=high method.k=-1 method.full_matrices=false \
modelpool=clip-vit-base-patch32_single_finetuned \
modelpool.models.1.name=${task} \
modelpool.models.1.path=tanganke/clip-vit-base-patch32_${task} \
taskpool=clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/single-task/projection_merging_zone2_${task}.json" &
# Space III
CUDA_VISIBLE_DEVICES=2 fusion_bench \
method=singular_projection_merging \
method.device=cuda method.rank=high method.k=-1 method.full_matrices=true \
modelpool=clip-vit-base-patch32_single_finetuned \
modelpool.models.1.name=${task} \
modelpool.models.1.path=tanganke/clip-vit-base-patch32_${task} \
taskpool=clip-vit-classification_TA8 \
report_save_path="outputs/ViT-B-32/single-task/projection_merging_zone23_${task}.json" &
wait
done
References¶
Algorithms¶
SmileUpscalingAlgorithm
¶
Bases: SimpleProfilerMixin
, BaseAlgorithm
Source code in fusion_bench/method/smile_upscaling/smile_upscaling.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
|
__init__(*, device='cuda', upscaling_accelerator=None, full_matrices=True, gate_k=256, k=256, top_k=1, routing_use_diff=True, average_experts=False, model_path=None, **kwargs)
¶
Initialize the SmileUpscalingAlgorithm.
Parameters:
-
device
¶str
, default:'cuda'
) –The device to perform the computation on.
-
upscaling_accelerator
¶str
, default:None
) –The device to perform the SVD computation on.
-
full_matrices
¶bool
, default:True
) –Whether to compute the full-sized U and V matrices.
-
gate_k
¶int
, default:256
) –The number of singular values to keep for the gate.
-
k
¶int
, default:256
) –The number of singular values to keep for the experts.
-
top_k
¶int
, default:1
) –The number of top experts to select.
-
routing_use_diff
¶bool
, default:True
) –Whether to use weight differences for routing.
-
average_experts
¶bool
, default:False
) –Whether to average the experts.
-
model_path
¶str
, default:None
) –The path to save/load the model.
-
**kwargs
¶Additional arguments.
Source code in fusion_bench/method/smile_upscaling/smile_upscaling.py
merge(pretrained_model, finetuned_models, in_place=True)
¶
Merges the pretrained model with the fine-tuned models to create an upscaled model.
Parameters:
-
pretrained_model
¶Module
) –The pretrained model.
-
finetuned_models
¶List[Module]
) –A list of fine-tuned models.
-
in_place
¶bool
, default:True
) –If True, modifies the pretrained model in place. Otherwise, creates a copy.
Returns:
-
–
nn.Module: The merged model.
Source code in fusion_bench/method/smile_upscaling/smile_upscaling.py
run(modelpool)
¶
Executes the upscaling process.
Parameters:
-
modelpool
¶ModelPool
) –The pool of models to be used for upscaling.
Returns:
-
–
nn.Module: The upscaled model.
Source code in fusion_bench/method/smile_upscaling/smile_upscaling.py
-
A. Tang et. al. SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models. Aug, 2024. https://arxiv.org/abs/2408.10174 ↩
-
Yadav, Prateek, et al. "A Survey on Model MoErging: Recycling and Routing Among Specialized Experts for Collaborative Learning." arXiv preprint arXiv:2408.07057 (2024). ↩