Skip to content

Depth Upscaling

Usage

The DepthUpscalingAlgorithm is used to upscale the depth of PyTorch models. Here's a basic guide on how to use it:

First, import the necessary modules:

from omegaconf import DictConfig
from torch import nn
from fusion_bench.method.depth_upscaling import DepthUpscalingAlgorithm
from fusion_bench.modelpool import to_modelpool

Create an instance of DepthUpscalingAlgorithm by passing a configuration dictionary. This dictionary should contain the name of the method ("depth_upscaling") and a list of layer indices that determine the upscaling pattern.

method_config = {"name": "depth_upscaling", "layer_indices": [0, 1, 1, 0]}
algorithm = DepthUpscalingAlgorithm(DictConfig(method_config))

Assume we have a list of PyTorch models (nn.ModuleList instances) that we want to upscale. Here, we're creating a list of linear models as an example:

model = nn.ModuleList([nn.Linear(10, 10) for _ in range(2)])

Then, we can the model to the run method of our algorithm:

upscaled_model = algorithm.run(model)

The run method will return an upscaled model. The type of the returned model will be the same as the input models (in this case, nn.ModuleList), and its length will be determined by the layer indices specified in the method configuration.

Examples

Here we provide an example of how to use the DepthUpscalingAlgorithm to upscale the depth of a Mistral model 1.

alt text
Credit to "SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling"
from omegaconf import DictConfig
from torch import nn
from transformers import AutoModelForCausalLM, MistralConfig, MistralForCausalLM
from fusion_bench.method.depth_upscaling import DepthUpscalingAlgorithm

# create a Mistral model
# here we randomly initialize the model for demonstration purposes
# in practice, you would load a pretrained model
model_config = MistralConfig(
    # https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json
    **{
        "architectures": ["MistralForCausalLM"],
        "bos_token_id": 1,
        "eos_token_id": 2,
        "hidden_act": "silu",
        "hidden_size": 4096,
        "initializer_range": 0.02,
        "intermediate_size": 14336,
        "max_position_embeddings": 32768,
        "model_type": "mistral",
        "num_attention_heads": 32,
        "num_hidden_layers": 32,
        "num_key_value_heads": 8,
        "rms_norm_eps": 1e-05,
        "rope_theta": 10000.0,
        "sliding_window": 4096,
        "tie_word_embeddings": False,
        "torch_dtype": "bfloat16",
        "transformers_version": "4.34.0.dev0",
        "use_cache": True,
        "vocab_size": 32000,
    }
)
print('creating model')
model: MistralForCausalLM = AutoModelForCausalLM.from_config(model_config)

method_config = {
    "name": "depth_upscaling",
    "layer_indices": ["range(0,24)", "range(8,32)"],
}
algorithm = DepthUpscalingAlgorithm(DictConfig(method_config))
print('upscaling model')
upscaled_model = algorithm.run(model.model.layers)

# substitute the model with the upscaled model
model.model.layers = upscaled_model

Code Integration

The DepthUpscalingAlgorithm is integrated into the fusion_bench package. You can use it by specifying "depth_upscaling" as the method name in the command line or configuration file.

config/method/depth_upscaling.yaml
name: depth_upscaling
# this should be a list of integers or string, indicating the sequence of layers. If the entry is an integer, it will use the n-th layer of the model. If the entry is a string, it will use the layers specified by the string. The string should be a valid python expression that evaluates to a list of integers.
# for example, ["range(0,12)", "range(6,12)"] will use the first 12 layers and the last 6 layers of the model to construct the new model
# [0, 2, 4, "range(6,12)"] will use the 1st, 3rd, 5th, and the 7th to 12th layers of the model to construct the new model
layer_indices: null

You can then run the fusion_bench command with the specified configuration file:

fusion_bench method=depth_upscaling ...

References

DepthUpscalingAlgorithm

Bases: BaseAlgorithm

Implements the Depth Upscaling Algorithm.

  • Kim et al. SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling. http://arxiv.org/abs/2312.15166

This class extends the BaseModelFusionAlgorithm to handle depth upscaling of models. It supports upscaling the depth of a model by duplicating specified layers.

Parameters:

  • layer_indices
    (list) –

    List of layer indices to duplicate.

  • **kwargs

    Additional keyword arguments.

Source code in fusion_bench/method/depth_upscaling/depth_upscaling.py
class DepthUpscalingAlgorithm(BaseAlgorithm):
    R"""
    Implements the Depth Upscaling Algorithm.

    - Kim et al. SOLAR 10.7B: Scaling Large Language Models with Simple yet Effective Depth Up-Scaling. http://arxiv.org/abs/2312.15166

    This class extends the `BaseModelFusionAlgorithm` to handle depth upscaling of models.
    It supports upscaling the depth of a model by duplicating specified layers.

    Args:
        layer_indices (list): List of layer indices to duplicate.
        **kwargs: Additional keyword arguments.
    """

    _config_mapping = BaseAlgorithm._config_mapping | {
        "layer_indices": "layer_indices",
    }

    def __init__(self, layer_indices: Union[str, List[int]], **kwargs):
        self.layer_indices = layer_indices
        super().__init__(**kwargs)

    @torch.no_grad()
    def run(self, modelpool: nn.ModuleList | BaseModelPool) -> nn.ModuleList:
        """
        Executes the depth upscaling algorithm on a given model pool.

        This method checks the type of the model pool, ensures that it contains only one model, and verifies that the model is an instance of `nn.ModuleList`.

        Args:
            modelpool (nn.ModuleList | ModelPool): The pool of models to upscale. Must contain only one model.

        Returns:
            nn.ModuleList: The upscaled model.

        Raises:
            AssertionError: If the model pool contains more than one model or if the model is not an instance of `nn.ModuleList`.
            ValueError: If an invalid layer specification is provided in the configuration.
        """
        # check the modelpool type
        if isinstance(modelpool, BaseModelPool):
            assert len(modelpool) == 1, "DepthUpscaling only support one model"
            model = modelpool.load_model(modelpool.model_names[0])
            assert isinstance(
                model, nn.ModuleList
            ), f"The model should be a `nn.ModuleList`, but got {type(model)}"
        elif isinstance(modelpool, nn.ModuleList):
            model = modelpool
        else:
            raise AssertionError(
                f"Invalid modelpool type: {type(modelpool)}. Expected `ModelPool` or `nn.ModuleList`."
            )

        # parse the layers
        layer_indices = self.layer_indices
        parsed_layer_indices = []
        for layer in layer_indices:
            if isinstance(layer, int):
                parsed_layer_indices.append(layer)
            elif isinstance(layer, str):
                parsed_layer_indices.extend(eval(layer))
            else:
                raise ValueError("Invalid layer specification: {}".format(layer))

        # create a new model with the specified layers
        new_model = nn.ModuleList(
            [
                deepcopy(model[i])
                for i in tqdm(
                    parsed_layer_indices, desc="constructing depth-upscaled model"
                )
            ]
        )

        return new_model
run(modelpool)

Executes the depth upscaling algorithm on a given model pool.

This method checks the type of the model pool, ensures that it contains only one model, and verifies that the model is an instance of nn.ModuleList.

Parameters:

  • modelpool
    (ModuleList | ModelPool) –

    The pool of models to upscale. Must contain only one model.

Returns:

  • ModuleList

    nn.ModuleList: The upscaled model.

Raises:

  • AssertionError

    If the model pool contains more than one model or if the model is not an instance of nn.ModuleList.

  • ValueError

    If an invalid layer specification is provided in the configuration.

Source code in fusion_bench/method/depth_upscaling/depth_upscaling.py
@torch.no_grad()
def run(self, modelpool: nn.ModuleList | BaseModelPool) -> nn.ModuleList:
    """
    Executes the depth upscaling algorithm on a given model pool.

    This method checks the type of the model pool, ensures that it contains only one model, and verifies that the model is an instance of `nn.ModuleList`.

    Args:
        modelpool (nn.ModuleList | ModelPool): The pool of models to upscale. Must contain only one model.

    Returns:
        nn.ModuleList: The upscaled model.

    Raises:
        AssertionError: If the model pool contains more than one model or if the model is not an instance of `nn.ModuleList`.
        ValueError: If an invalid layer specification is provided in the configuration.
    """
    # check the modelpool type
    if isinstance(modelpool, BaseModelPool):
        assert len(modelpool) == 1, "DepthUpscaling only support one model"
        model = modelpool.load_model(modelpool.model_names[0])
        assert isinstance(
            model, nn.ModuleList
        ), f"The model should be a `nn.ModuleList`, but got {type(model)}"
    elif isinstance(modelpool, nn.ModuleList):
        model = modelpool
    else:
        raise AssertionError(
            f"Invalid modelpool type: {type(modelpool)}. Expected `ModelPool` or `nn.ModuleList`."
        )

    # parse the layers
    layer_indices = self.layer_indices
    parsed_layer_indices = []
    for layer in layer_indices:
        if isinstance(layer, int):
            parsed_layer_indices.append(layer)
        elif isinstance(layer, str):
            parsed_layer_indices.extend(eval(layer))
        else:
            raise ValueError("Invalid layer specification: {}".format(layer))

    # create a new model with the specified layers
    new_model = nn.ModuleList(
        [
            deepcopy(model[i])
            for i in tqdm(
                parsed_layer_indices, desc="constructing depth-upscaled model"
            )
        ]
    )

    return new_model